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Cylindrically symmetric Green’s function approach for modeling
the crystal growth morphology of ice

Kenneth G. Libbrecht*
Norman Bridge Laboratory of Physics, California Institute of Technology 264-33, Pasadena, California 91125

~Received 1 March 1999!

We describe a front-tracking Green’s function approach to modeling cylindrically symmetric crystal growth.
This method is simple to implement, and with little computer power can adequately model a wide range of
physical situations. We apply the method to modeling the hexagonal prism growth of ice crystals, which is
governed primarily by diffusion along with anisotropic surface kinetic processes. From ice crystal growth
observations in air, we derive measurements of the kinetic growth coefficients for the basal and prism faces as
a function of temperature, for supersaturations near the water saturation level. These measurements are inter-
preted in the context of a model for the nucleation and growth of ice, in which the growth dynamics are
dominated by the structure of a disordered layer on the ice surfaces.@S1063-651X~99!05708-6#

PACS number~s!: 68.70.1w, 81.30.Fb, 81.10.Aj
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I. INTRODUCTION

The dynamics of crystal growth has been well studied
the case of very fast surface kinetics, in which the grow
morphology is governed primarily by diffusion and surfa
tension@1#. These efforts have led to a detailed ‘‘solvabili
theory,’’ in which many aspects of the growth process
well understood analytically, and there is good agreem
with a wide range of experimental measurements~however,
see@2#!. Numerical modeling techniques have also been w
developed in this regime, based both on front tracking@3–7#
and phase-field modeling formalisms@8–12#.

In many physical systems, however, crystal growth
dominated primarily by diffusion along with anisotropic su
face kinetic processes. In this case the crystal morpholog
strongly faceted, and surface tension plays a relatively m
role in the growth dynamics, serving mainly to round t
edges of the facets on a small scale. The importance of
isotropic surface kinetics in environmental and industr
crystal growth is evidenced by the common occurrence
crystalline facets in these situations. Since the diffusion p
cess is fundamentally very well understood, whereas sur
kinetic processes are often not, it is desirable to disenta
the two effects. In this way measurements of crystal grow
can be converted into measurements of the anisotropic
face kinetics, which can subsequently be interpreted in
context of models of nucleation and growth of the giv
surfaces.

An example of such a system we are considering her
ordinary ice. The crystal growth dynamics of ice has
ceived considerable scientific attention, due in large par
its ubiquitous presence and important consequences in n
ral meteorological phenomena@13–17#. The growth of ice
crystals from the vapor phase in particular exhibits a stron
faceted and remarkably complex morphology, with a p
nounced temperature and supersaturation dependence@18#.

*URL://www.its.caltech.edu/˜atomic/. Electronic address
kgl@caltech.edu
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There has been considerable speculation as to the under
physical mechanisms responsible for this behavior, and
widely believed that the presence of a disordered~or pre-
melted! layer on the ice surface plays a significant role in t
surface kinetics@18–20#.

Our understanding of the detailed molecular dynamics
the disordered surface layer remains fairly poor, howev
along with many other properties of water and ice. Rec
x-ray-diffraction observations@21# clearly indicate that the
layer forms at approximately215 °C on the basal faces
growing logarithmically as the temperature increases, w
the layer thickness diverging at the melting temperature. T
behavior on the prism faces is qualitatively similar, but w
the disordering transition occurring at a somewhat hig
temperature. According to the Kuroda and Lacmann~hereaf-
ter KL! model@19#, the crystal growth rate depends strong
on the details of these disordered layers, since the sur
structure affects~among other things! the rate of two-
dimensional~2D! nucleation at the smooth crystal interfac
The temperature-dependent properties of the disordered
ers, which are different for the prism and basal faces,
thus ultimately responsible for the complex crystal grow
morphology of ice crystals. The KL model is qualitative
appealing in many of its features, but has been difficult
test quantitatively.

Although many measurements of ice crystal growth d
namics from vapor have been made under a wide rang
conditions, and using different solvent gases, to date
growth data have not produced an adequate compilatio
the surface kinetic coefficient as a function of temperatu
supersaturation, surface orientation, and solvent gas. The
son for this is twofold. First, ice crystal growth from vapor
strongly diffusion limited, so growth velocity measuremen
can easily be adversely affected by experimental circu
stances in which the diffusion field is not carefully co
trolled. Second, ice crystal growth morphologies can be q
complex, with neighboring regions of a crystal growing
very different rates. Again in such a case the structure of
diffusion field does not allow an easy interpretation
growth measurements in terms of a surface kinetic coe
cient. Thus a significant first step toward a truly quantitat
1967 © 1999 The American Physical Society
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1968 PRE 60KENNETH G. LIBBRECHT
understanding of ice crystal growth, namely acquiring co
prehensive measurements of the kinetic coefficient, has
to be taken.

We outline here a potential solution to this problem
volving the observation of small ice crystallites, which ha
a relatively simple form dominated by a solid hexagon
prism morphology@18,22#. In this regime the crystal growth
is strongly faceted, and thus governed principally by surf
kinetics and vapor diffusion. Furthermore, the 3D diffusi
field is nearly cylindrically symmetric and can be adequat
modeled using the Green’s function approach described
low. Using such a modeling procedure we demonstrate
the surface kinetic coefficients can be derived with consid
able accuracy from ice crystal growth data.

Numerical modeling of solidification has undergone co
siderable development work in the past few years, both
front-tracking @3–7# and phase-field methods@8–12#. The
computational difficultly of the solidification problem is con
siderable, however, and full 3D calculations have only
cently been performed using efficient adaptive-grid pha
field techniques @9,12#. The 3D calculations require
substantial computer power, and have not been demonst
for low supersaturation levels or in the case of strongly
isotropic surface kinetics. Fully mathematically consiste
modeling of strongly faceted surfaces has been a particu
challenging problem in crystal growth@24,25#.

Green’s function techniques have been well develope
two dimensions, both for surface-tension-limited grow
@3,23# and for surface-kinetic-limited growth@4#. Here we
extend these treatments to the quasi-2D case of cylindric
symmetric growth, which mainly involves the choice of
different Green’s function, along with some special tre
ment near the axis of the cylindrical coordinates. The
proach described here is quite simple to implement, requ
little computer power, and can be adapted to a wide rang
physical situations. Furthermore, it is a fairly good appro
mation to hexagonal prism growth, as long as there is n
substantial hollowing of the growth of the prism faces. Th
this approach applies fairly well to the case of ice crys
growth when the supersaturation is near or below the w
saturation value, or when the crystal size is not too large.
also well suited to model the hollow column morpholo
@18#, in which there is typically a substantial, nearly cyli
drically symmetric, hollowing of the basal faces, but litt
hollowing of the prism faces.

We have used this technique here to model the growth
small ice crystallites grown in air, using data from Y
mashita@18,22#. We derive from these data, for a supersa
ration near the water saturation level, the kinetic growth
efficient as a function of temperature, which exhibits a gr
deal of structure between 0 °C and230 °C. We interpret the
kinetic coefficient measurements in the context of grow
models in the presence of a disordered layer on the diffe
crystal facets of ice. Additional data of this kind, at differe
supersaturation levels and in different solvent gases, sh
reveal much about the underlying physics governing
growth of ice crystals, and may additionally contribute to o
understanding of the enigmatic surface structure of ice.

II. CYLINDRICALLY SYMMETRIC CRYSTAL GROWTH

A. The diffusion equation and boundary conditions

For concreteness we define our problem to be cry
growth from a supersaturated vapor in a solvent gas,
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though the notation could easily be generalized to other s
tems @26#. Vapor transport through the solvent gas is go
erned by the diffusion equation

]c

]t
5D¹2c,

whereD is the diffusion constant andc is some generalized
concentration, which we take here to be number density
solute molecules. Since the solid density is much higher t
the vapor density (csolid@cvapor), the diffusion lengthl D
[2D/v is typically very large, which allows us to ignore th
time derivative in the above, leaving¹2c50 outside the
crystal surface.

Our first boundary condition for the solution of this equ
tion arises far away from the growing crystal, where we
c(`)5c` , the supersaturation level. Another boundary co
dition comes from mass conservation, which gives

vn[~ n̂•vW surf!5
D

csolid
~ n̂•¹W c!surf

at the crystal surface, wheren̂ is the normal to the surface
vW surf is the surface growth velocity vector, and the express
on the right-hand side is evaluated just above the cry
surface. Another expression for the growth velocity com
from the Wilson-Frankel law,

vn5K
csurf2ceq

ceq
,

wherecsurf is the number density just above the surface,ceq
is the number density above an equilibrium surface~for
which vn50!, and K is the usual kinetic coefficient. The
maximum value of the kinetic coefficient comes from t
Hertz-Knudsen formula,

Kmax8 5aKmax5
aPeqVm

~2pmkT!1/2,

wherea<1 is the sticking coefficient,Peq is the vapor pres-
sure over an equilibrium surface,Vm is the molecular vol-
ume, andm is the molecular mass.

Since we are interested mainly in growth limited by d
fusion and surface kinetics, we ignore surface tension for
present by takingceq5csat, wherecsat is the saturation vapo
pressure above a flat surface@4,23#. Then definings[(c
2csat)/csat, the diffusion equation becomes

¹2s50 ~1!

with the boundary conditionss(`)5s` and vn5Kssurf.
Combining the two expressions forvn yields the mixed
boundary condition

Kssurf5
csat

csolid
D~ n̂•¹W s!surf. ~2!

For the present case we consider thatK5K( û,T,ssurf) can
depend on crystallographic orientationû of the growing sur-
face, temperatureT, and the supersaturation valuessurf.

For the functional form of the kinetic coefficient, we tak
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PRE 60 1969CYLINDRICALLY SYMMETRICAL GREEN’S FUNCTION . . .
K5Kmaxh1 tanhS 1

h1
Dh2 tanhS 1

h2
D

with

h i5~ tanu i1sie i !/si , ~3!

whereu i is the angle of the surface normal relative to t
crystal axis, and the subscripts refers to either theẑ ~basal! or
r̂ ~prism! axes. This form is similar to that used b
Yokoyama and Kuroda@4#, which derives from the advance
ment of admolecule terraces calculated by Burton, Cabr
and Frank@29#. For small si this form providesK'Kmax
except nearu i50, where there is a cusplike behavior. He
we have softened the cusp by adding thee i factor, which
givesK'e iKmax on a facet.

B. Green’s function formalism

The complexity of diffusion limited growth, even for th
cylindrically symmetric case, is such that an analytic solut
is nearly impossible for anything but the very simplest cas
requiring the use of numerical simulation. We use a Gree
function method here, which is an extension of that d
scribed for the 2D case@3,4,23#. With this technique we
transform the bulk diffusion equation into an integr
differential equation over the crystal interface. By solvi
this interface equation numerically, the grid points mo
with the interface, and the transformation reduces the dim
sionality of the problem, in our case from a 2D to a 1
problem.

The Green’s function formalism for transforming th
Laplace equation is well known from electrostatics@27#, and
we apply it here to the cylindrically symmetric problem
From Green’s theorem, using Jackson’s notation in 3D,

E
V
~f¹2c2c¹2f!dV5 R

S
Ff ]c

]n
2c

]f

]n GdA, ~4!

wheref andc are two scalar functions, and the volume a
area integrals are, respectively, over some volumeV and the
surface of that volumeS. The derivatives are with respect t
the surface normal, i.e., (]f/]n)5(n̂•¹W f). Taking our lead
from electrostatics, we takef5s, and let our volume be the
space between the crystal surface and the far-away boun
The Green’s function for the cylindrically symmetric case

c~xW ,xW8!5
e0

Q
F ring~xW ,xW8!,

where F ring(xW ,xW8) is the electrostatic potential atxW arising
from a ring of chargeQ at positionxW8. Here our variables are
xW5(r ,z) in cylindrical coordinates, and likewise forxW8.

Taking xW to be just above the crystal surface, and us
¹2s50, ¹2c52d(xW2xW8), and our additional boundar
conditions, we obtain
a,

n
s,
’s
-

n-

ry.

g

2s~xW !5 R
S
Fs ]c

]n8
2c

]s

]n8GdA85E Fs ]c

]n8
2c

]s

]n8GdA18

1E F ]c

]n8
2c

csolid

Dcsat
K~ û,s!GsdA28 ,

whereA18 is the boundary at infinity andA28 is the boundary
at the crystal surface.

To evaluate the integrals at infinity, we note the sphe
cally symmetric solution for a crystal of radiusR0 ,

s~R!5s`2
DsR0

R
,

where hereR is the radius in spherical coordinates. Thus f
large R we haves˜s` and ds/dn;R22. Similarly, c
;R21 anddc/dn5dc/dr;R22. The area of the boundar
goes like A1;R2, so the second term in the first squa
brackets above vanishes and the first term becomes

E Fs ]c

]n8GdA18˜2s`

and so

s~xW !5s`2E F ]c

]n8
2c

csolid

Dcsat
K~ û,s!GsdA28

5s`12pE F ]c

]n8
2c

csolid

Dcsat
K~ û,s!Gsr 8dG28 , ~5!

where the latter integral is a line integral over the bound
of the cylindrical crystal. The sign change in this term com
from an arbitrary convention as to the direction of the li
integral overG2 . We note this form is somewhat differen
from that described in Ref.@4#. In the case of very fast ki-
netics, the boundary conditions change, giving

s~xW !5s`12pE F ]c

]n8
s2c

]s

]n8G r 8dG28 ,

where again we have thatxW lies just above the crystal sur
face.

C. The Green’s function

Since there is no simple analytic expression
F ring(xW ,xW8), we resort to numerical techniques to evaluate
and its derivatives. For this we start with a ring of chargeQ
and radiusr 85r 0 , located atz850,

F0~r ,z!5F ring„~r ,z!,~r 0,0!…,

which we generate in table form using a commercial ad
tive grid electrostatics program@28# using Q51029 C and
r 051 m. Translation inz gives

F ring„~r ,z!,~r 0 ,z8!…5F ring„~r ,z2z8!,~r 0,0!…

5F ring„~r ,uz2z8u!,~r 0,0!…,



ym

e

a

ch

h

is
on

tic
om

o

t

g
w
as

ur-

or

ed

1970 PRE 60KENNETH G. LIBBRECHT
where we have used the fact that the ring potential is s
metric in z about the ring plane. Similarly, scaling inr8
yields

F ring„~r ,z!,~r 8,0!…5S r 0

r 8DF ringXS r
r 0

r 8
,z

r 0

r 8D ,~r 0,0!C
so for an arbitrary ring with chargeQ,

F ring„~r ,z!,~r 8,z8!…5S r 0

r 8DF ringXS r
r 0

r 8
,uz2z8u

r 0

r 8D ,~r 0,0!C
5S r 0

r 8DF0S r
r 0

r 8
,uz2z8u

r 0

r D
and the Green’s function becomes

c~xW ,xW8!5
e0

Q S r 0

r 8DF0S r
r 0

r 8
,uz2z8u

r 0

r 8D . ~6!

Near the ring itself the potential looks like that of a lin
charge, so

F0˜
2Q

4p2r 0e0
lnS gR

r 0
D'2~2.863 V!lnS R

8r 0
D

using the above values forQ andr 0 . Here we have defined
local Cartesian coordinate system (r,z)5(r 2r 0 ,z2z0),
and define the length variableR5(r21z2)1/2.

Since the ring is curved, we can do a bit better at mat
ing the numerical function by adding a linear term inr. Thus
we take

F0~r ,z!˜2~A22A1r!lnS R

8r 0
D ,

whereA151.0822,A252.863, andr is in meters. The value
of A1 was determined by a fit to the numerical data. T
gradient of F0 near the ring is then ¹F0
5(]F0 /]r ,]F0 /]z), with

]F0

]r
52~A22A1r!

r

R2 1A1 lnS R

8r 0
D

and

]F0

]z
52~A22A1r!

z

R2 .

We use this form forF0 whenR,0.06 m.
The asymptotic behavior of the ring potential at large d

tance can be gotten from a simple multipole expansi
keeping only the monopole and quadrupole (l ,m)5(2,0)
terms. To this order

F0~r ,z!'
Q

4pe0V F12
1

4

r 0
2

V2 ~3 cos2 u21!G
and this form is used wheneverV5(r 21z2)1/2.4 m. We
have evaluatedF0 , comparing the tabulated and asympto
forms, and estimate that with the above procedure we c
pute the Green’s function everywhere to an accuracy
-

-

e

-
,

-
f

roughly a few parts in 103. We also verify that our Green’s
function satisfies the identityc(xW ,xW8)5c(xW8,xW ) to the same
accuracy.

To compute the gradient ofc(xW ,xW8), we can use the fac
that ¹x8c(xW ,xW8)5¹x8c(xW8,xW ) to write

]

]r 8
c~xW ,xW8!5

e0

Q S r 0

r D 2

¹x1F0S r 8
r 0

r
,uz2z8u

r 0

r D ,

where¹x1F0(x1 ,x2) is the derivative ofF0 with respect to
its first argument. Similarly

]

]z8
c~xW ,xW8!5

e0

Q S r 0

r D 2

¹x2F0S r 8
r 0

r
,uz2z8u

r 0

r D
3sgn~z82z!.

III. NUMERICAL SIMULATION

Given the above Green’s function formalism for solvin
the cylindrically symmetric crystal growth problem, we no
write down a numerical algorithm. The basic steps are
follows @3,23#:

~i! Pick an initial crystal shape, with a discrete set ofN
pointsxW i .

~ii ! Calculate the various pieces of Eq.~5!, and turn this
integral equation into a matrix equations i5s01Hi j s j ,
wheres i is the vector of supersaturation values on the s
face pointsxi .

~iii ! Solve the matrix equation fors i and calculate the
crystal growth velocity vectorv i .

~iv! Evolve the crystal profile pointsxi by a distancev iDt
along the surface normal.

~v! Change the spacing and distribution ofxi along the
surface, if desired.

~vi! Iterate.

A. Defining the matrix equation

We break up the integral equation above@Eq. ~5!# into a
sum @3,23#:

s~xW i !5s`1(
j 51

N E
~xj 1xj 21!/2

~xj 1xj 11!/2F ]c

]n8
2c

csolid

Dcsat
K~ û,s!G

32pr 8sdG28 ,

where thexj in the integral limits are meant as the vect
points shown in Fig. 1. This can then be written

s i5s`1(
j 51

N

Hi j s j ,

FIG. 1. A section of the polygonal crystal surface. The shad
area denotes the integration region for pointxj .
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PRE 60 1971CYLINDRICALLY SYMMETRICAL GREEN’S FUNCTION . . .
where

Hi j 5E
~xj 1xj 21!/2

~xj 1xj 11!/2F ]c

]n8
~xi ,x8!

2c~xi ,x8!
csolid

Dcsat
K~ û,s!G2pr 8dG28

5Ai j 2Bi j

5~Ai j8 1Ai j9 !2~Bi j8 1Bi j9 !

and

Ai j8 5E
~xj 1xj 21!/2

xj ]c

]n8
~xi ,x8!2pr 8dG28

Bi j8 5
csolid

Dcsat
E

~xj 1xj 21!/2

xj
K~ û j 21 ,s j !c~xi ,x8!2pr 8dG28

Ai j9 5E
xj

~xj 1xj 11!/2 ]c

]n8
~xi ,x8!2pr 8dG28

Bi j9 5
csolid

Dcsat
E

xj

~xj 1xj 11!/2
K~ û j ,s j !c~xi ,x8!2pr 8dG28

with

u j5arctanS r j 112r j

zj 112zj
D .

Fundamentally this is a nonlinear equation, owing to the
pendence ofK on s. However, we assume thatK depends
only weakly ons, so we can use the previous value ofs i in
computingK.

We evaluate these integrals using Gaussian quadrat
using the usual form

E
21

11

f ~j!dj' (
m51

n

wmf ~jm!.

For example, we can rewrite one of the terms above in
form

Bi j9 '
2pcsolid

Dcsat

sj

4
K~ û j ,s j !E

21

11

c„xi ,x8~j!…r 8~j!dj,

wheresj5uxj 112xj u and

x8~j!5S 32j

4 D xj1S 11j

4 D xj 11

and we obtain similar forms for the other terms. For eva
ating Bi j9 , which has a logarithmic divergence in the int
grand, we use the logarithmic Gaussian quadrature form
@3,23#. The end points also present some special cases s
r i˜0, and must be done separately. For example, we ha

Bi1'
csolid

Dcsat
KS p

2
,s1Dc~xi ,x1!pS r 2

2 D 2

.

-

es,

e

-

la
ce
e

We evaluate the normal derivatives similarly, giving, f
example, to lowest order

Ai j9 'p
e0

Q S r 0

r i
D 2F¹x1F0S r 8

r 0

r i
,uzi2z8u

r 0

r i
D ~2zj 111zj !

1¹x2F0S r 8
r 0

r i
,uzi2z8u

r 0

r i
D

3sgn~z82zi !~r j 112r j !G r 8,

where

x85 3
4 xj1

1
4 xj 11 ,

and for the end points,

Ai1'
e0

Q S r 0

r i
D 2

¹x2F0S 0,uzi2z1u
r 0

r i
D sgn~z12zi !pS r 2

2 D 2

.

Finally, for the diagonal elements we use the sum rule@23#
to write

Aii 52(
j Þ i

Ai j .

Implementation of the above into computer code w
straightforward, but some care had to be taken to avoid
stabilities. The first of these is intrinsic to the problem, sin
we have ignored surface tension, which is known to be
dominant effect limiting the Mullens-Sekerka instability
many crystal growth problems@23#. This instability does not
have a detrimental effect in the case of a highly anisotro
kinetic coefficient, however since then the crystal growth
strongly faceted@4#. The numerical procedure describe
above does not introduce additional instabilities at the c
ners of the facets.

Another problem arises when thesi are very small, and
the kinetic coefficient is thus highly anisotropic. In this ci
cumstance the growth of a polygonal line segment on
crystal surface can take it fromu i,0 to u i.0 ~or vice versa!
in a single time step, not stopping atu i50, whereK assumes
its minimum value. Taking very small time steps solves t
problem, but at a price of greatly increased execution ti
for a given run. We eliminated this problem even for lar
time steps by checking at each iteration if any line segmen
going to advance and changes the sign ofu i in the process. If
so, the growth of one of the vertex points is reduced to fo
u i˜0 for that segment. This ensures that the surface d
not pass through the ‘‘magic angles’’ which define the cry
tal facets without pausing atu i50 for at least one time step

Finally, we find some indication of numerical instabilitie
when a large number of interface points is used, typica
greater than a few hundred. We believe these problems a
because of the large matrix inversion that results@3#, along
with our imperfect computation of the ring charge Green
function described above. With these caveats, we have fo
that the Green’s function method yields quite robust and
producible results for the growth of prismatic crystals.
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1972 PRE 60KENNETH G. LIBBRECHT
IV. APPLICATION TO THE GROWTH MORPHOLOGY
OF ICE

Diameter measurements of growing ice crystallites
shown in Fig. 2, which is adapted from the data of Y
mashita @18,22#. These measurements were obtained
seeding ice crystals in a variable-temperature cloud cham
operating with ordinary air, saturated with suspended wa
droplets. The presence of water droplets, similar to those
natural cloud, guaranteed that the water vapor pressure in
chamber was fixed very near the water saturation level. A
nucleating a large collection of crystallites, the suspen
crystallites were allowed to grow for 200 sec, at which po
a sample of the crystal population was collected and the c
tal sizes measured. These data clearly show the well-kn
morphology transitions from platelike growth~22 °C! to co-
lumnar growth ~25 °C! to platelike growth~215 °C! and
back to columnar growth~230 °C!. These data are particu
larly well suited for quantitative analysis, since the cryst
grew in the absence of perturbing boundary conditions
contrast to crystal growth on substrates or other fixtures.

To model these data, we tooks15s251/100, D52
31025 m2/sec21, and set the saturation at infinity equal
the water saturation level. Because the crystal growth
typically strongly faceted, the precise values ofs1 and s2
were not critical for determining the facet growth rate. T
initial shape of the crystal was spherical with a radius of fi
mm, which was also not critical. Thene1 and e2 in Eq. ~3!
were adjusted so that the crystal dimensions at the end of
sec of growth most closely matched the measured val
assuming that the kinetic coefficient was independent os
for these calculations. From this analysis we derived val
for the kinetic coefficient on the prism and basal faces a
function of temperature, for supersaturation values of or
the water saturation level, as shown in Fig. 3. By runn
models with different input parameters, we estimate the
trinsic modeling uncertainties to be roughly 20% for most
the data.

The modeled crystal growth showed some hollowing
the basal faces, but mainly exhibited simple prisma
growth; the crystal size was taken to equal the largest dim
sion in all cases, i.e.,La52r max and Lc5(zmax2zmin). We

FIG. 2. Ice crystal growth data, adapted from Yamash
@18,22#. This shows the ice prism diameter (La) and thickness (Lc)
after growing 200 sec in ordinary air supersaturated at the w
saturation level.
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were able to reproduce the observed crystal sizes everyw
except at215 °C, where the calculated values ofLa after
200 sec were too small even withKprism5Kmax. It is likely
that some dendritelike growth~hollowing of the prism fac-
ets! occurred at this temperature, thus producing experim
tally measured crystal diameters in excess of what one wo
produce using a cylindrically symmetric model. The o
served growth may also have been affected by the ventila
effect @30#, since the crystallites were tumbling in the clou
chamber during the growth phase. Thus forT5215 °C only
we took Kprism5Kmax and Kbasal'Lc /ts` in Fig. 3, where
t5200 sec is the growth time. At all other temperatur
shown in Fig. 3, we could reproduce the observedLa and
Lc , and the fact thatK was bounded byKmax arose naturally
out of the model.

These effects introduce some systematic uncertainty
the inferred kinetic coefficients in Fig. 3, so the results h
must be taken as preliminary. Additional data are need
particularly under very controlled conditions at different s
persaturation levels, as might be obtained from observat
of levitated growing crystals@31#. With such data one could
observe the crystal size continuously during growth, a
compare the resultant crystal morphology with the mo
calculations as a function of time.

The results in Fig. 3 can be compared with the KL mod
predictions for growth in the presence of a disordered surf
layer @19#. For example, one feature of the KL model is th
for T&215 °C, the disordered layer is absent on both
basal and prism facets, and the growth kinetics is gover
by the 2D nucleation rate. In particular, the onset of rapid
nucleation is thought to produce the sharp increase inKbasal
for T,215 °C, which rises toKbasal5Kmax as the tempera-
ture decreases. At these low temperatures the rate of
nucleation is also expected to be rapid on the prism fac
which should then also result inKprism5Kmax. With this,
Kuroda and Lacmann argue on simple geometrical grou
that diffusion effects are sufficient to produce the observ

er
FIG. 3. Kinetic coefficient measurements derived from the d

in Fig. 2, obtained by numerical modeling of cylindrically symme
ric growth, as described in the text. The line forKmax shows the
maximum kinetic coefficient allowed by the Hertz-Knudsen fo
mula. The strong temperature dependence inKbasalandKprism arises
from the unusual surface properties of ice, which are ultimat
responsible for the complex growth morphology of ice crystals.
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values ofLa /Lc in this region.
We see from Fig. 3, however, that the KL model is inco

rect at low temperatures, and that we must haveKprism
!Kbasal below T5225 °C in order to explain the observa
tions. Assuming that 2D nucleation on the prism faces is
a limiting factor in the growth at these temperatures,
most likely explanation for the observations is that the sti
ing probability on the prism facets is considerably less th
unity, approximatelyaprism'0.05, while the sticking prob-
ability to the basal faces is nearabasal'1. We cannot offer a
convincing physical argument for why we should ha
aprism!abasalbelowT5225 °C, but one intriguing possibil
ity is the ‘‘poisoning’’ of the available lattice sites by th
solvent gas molecules. Evidence for this possibility has b
suggested previously by Beckmann@32#.

As described by Kuroda and Lacmann@18,19# in the KL
model, the onset of disordering brings with it a substan
change in the kinetic coefficient, from a large value ofK just
above the transition temperature to a much smaller va
below. This arises because the adhesive growth rate is
on the disordered surface, but can be very small in the
sence of the disordered layer. On the basal faces, the m
sured disordering transition atT'215 °C @21# is in fairly
good agreement with the KL model, which then explains
transition to a very low basal kinetic coefficient as the te
perature is lowered toT'215 °C. The slight discrepancy in
the disordering temperature between the KL model and
recent x-ray scattering data@21# may possibly be reconciled
if the kinetic coefficient depends on solvent gas, since
growth measurements were done in air while the x-ray d
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were obtained with no solvent gas present above the ice
face @33#. The transition from smallK to K'Kmax on the
basal faces belowT'225 °C then arises, according to th
KL model, from the onset of rapid 2D nucleation at the
lower temperatures.

A serious problem with the KL model is apparent wh
considering the prism faces, however. In order to explain
growth data, the KL model assumes that the disordering tr
sition on the prism faces occurs at a substantially lower te
perature than for the basal faces. This assumption is
borne out by the recent x-ray data, in which a disorder
transition is found atT'212 °C for the prism face, i.e., at
higher temperature than for the basal face. Although vari
measurements of the disordered layer on ice have yie
conflicting results@34#, it seems unlikely from the sum o
these data that the disordering transition on the prism f
occurs belowT5215 °C. This issue remains largely unre
solved.

In summary, we have described above a relatively sim
Green’s function approach for modeling cylindrically sym
metric crystal growth. This approach can adequately mo
the hexagonal prism growth of ice crystals, as long as ther
not significant hollowing of the prism faces. We used th
approach to model existing ice crystal growth data, and p
duced a measure of the surface kinetic coefficients of
basal and prism faces as a function of temperature, arou
single supersaturation level. Clearly, additional growth m
surements at different supersaturations and using diffe
solvent gases would be very useful for unraveling the
usual growth behavior and surface structure of ice.
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