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Cylindrically symmetric Green’s function approach for modeling
the crystal growth morphology of ice
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We describe a front-tracking Green’s function approach to modeling cylindrically symmetric crystal growth.
This method is simple to implement, and with little computer power can adequately model a wide range of
physical situations. We apply the method to modeling the hexagonal prism growth of ice crystals, which is
governed primarily by diffusion along with anisotropic surface kinetic processes. From ice crystal growth
observations in air, we derive measurements of the kinetic growth coefficients for the basal and prism faces as
a function of temperature, for supersaturations near the water saturation level. These measurements are inter-
preted in the context of a model for the nucleation and growth of ice, in which the growth dynamics are
dominated by the structure of a disordered layer on the ice surfg8863-651X99)05708-6

PACS numbgs): 68.70+w, 81.30.Fb, 81.10.A]

[. INTRODUCTION There has been considerable speculation as to the underlying
physical mechanisms responsible for this behavior, and it is
The dynamics of crystal growth has been well studied forwidely believed that the presence of a disordefed pre-
the case of very fast surface kinetics, in which the growthmelted layer on the ice surface plays a significant role in the
morphology is governed primarily by diffusion and surface surface kln9t|0$1872(]- _ _
tension[1]. These efforts have led to a detailed “solvability ~ Our understanding of the detailed molecular dynamics of
theory,” in which many aspects of the growth process aréhe disordered surface layer remains fairly poor, however,
well understood analytically, and there is good agreemer@lONg With many other properties of water and ice. Recent
with a wide range of experimental measuremehtsvever x-ray-diffraction observation§21] clearly indicate that the
seg[2]). Numerical modeling techniques have also been We||ayer_ forms a.t ap'prOX|mater—15 °C on the _basal faces,_
developed in this regime, based both on front trackg7] growing logarithmically as the temperature increases, with
: L . the layer thickness diverging at the melting temperature. The
and phase-field modeling formalisif8—12|. . . . o o .
. ._behavior on the prism faces is qualitatively similar, but with
In many physical systems, however, crystal growth is

dominated orimarily by diffusi | h aniSotropi the disordering transition occurring at a somewhat higher
ominated primarily by diffusion aiong with anisotropic sur- temperature. According to the Kuroda and Lacmémereaf-
face kinetic processes. In this case the crystal morphology

) ) JY I KL) model[19], the crystal growth rate depends strongly
strongly faceted, and surface tension plays a relatively minog, he details of these disordered layers, since the surface

role in the growth dynamics, serving mair}Iy to round the gy, cture affects(among other thingsthe rate of two-
edges of the facets on a small scale. The importance of aRimensional2D) nucleation at the smooth crystal interface.
iSOtrOpiC Surface kinetiCS in enVironmental and industrialThe temperature_dependent properties Of the disordered |ay_
crystal growth is evidenced by the common occurrence Ogrs, which are different for the prism and basal faces, are
crystalline facets in these situations. Since the diffusion prothus ultimately responsible for the complex crystal growth
cess is fundamentally very well understood, whereas surfao@orphology of ice crystals. The KL model is qualitatively
kinetic processes are often not, it is desirable to disentanglappealing in many of its features, but has been difficult to
the two effects. In this way measurements of crystal growthest quantitatively.
can be converted into measurements of the anisotropic sur- Although many measurements of ice crystal growth dy-
face kinetics, which can subsequently be interpreted in theamics from vapor have been made under a wide range of
context of models of nucleation and growth of the givenconditions, and using different solvent gases, to date the
surfaces. growth data have not produced an adequate compilation of
An example of such a system we are considering here ithe surface kinetic coefficient as a function of temperature,
ordinary ice. The crystal growth dynamics of ice has re-supersaturation, surface orientation, and solvent gas. The rea-
ceived considerable scientific attention, due in large part t@on for this is twofold. First, ice crystal growth from vapor is
its ubiquitous presence and important consequences in natstrongly diffusion limited, so growth velocity measurements
ral meteorological phenomerfd3—17. The growth of ice can easily be adversely affected by experimental circum-
crystals from the vapor phase in particular exhibits a stronglystances in which the diffusion field is not carefully con-
faceted and remarkably complex morphology, with a pro-trolled. Second, ice crystal growth morphologies can be quite
nounced temperature and supersaturation dependé8te complex, with neighboring regions of a crystal growing at
very different rates. Again in such a case the structure of the
diffusion field does not allow an easy interpretation of
*URL:/lwww.its.caltech.edl/atomic/.  Electronic ~ address: growth measurements in terms of a surface kinetic coeffi-
kgl@caltech.edu cient. Thus a significant first step toward a truly quantitative
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understanding of ice crystal growth, namely acquiring com-though the notation could easily be generalized to other sys-
prehensive measurements of the kinetic coefficient, has yeéms|[26]. Vapor transport through the solvent gas is gov-

to be taken. erned by the diffusion equation
We outline here a potential solution to this problem in-

volving the observation of small ice crystallites, which have Jc 5

a relatively simple form dominated by a solid hexagonal EzDV c

prism morphology{18,22. In this regime the crystal growth

is strongly faceted, and thus governed principally by surfac&vhereD is the diffusion constant anclis some generalized
kinetics and vapor diffusion. Furthermore, the 3D diffusionconcentration, which we take here to be number density of
field is nearly cylindrically symmetric and can be adequatelysolute molecules. Since the solid density is much higher than
modeled using the Green's function approach described bene vapor density d,> Cuapod, the diffusion lengthlp

low. Using such a modeling procedure we demonstrate that opy is typically very large, which allows us to ignore the
the surface kinetic coefficients can be derived with considers o gerivative in the above leaving2c=0 outside the

able accuracy from ice crystal growth data.

Numerical modeling of solidification has undergone con-
siderable development work in the past few years, both fo
front-tracking [3—7] and phase-field method8-12]. The

crystal surface.
Ouir first boundary condition for the solution of this equa-
fion arises far away from the growing crystal, where we set

computational difficultly of the solidification problem is con- C.(°.°) = C=, the supersaturation Ieve_l. Another b(_)undary con-
siderable, however, and full 3D calculations have only re-dition comes from mass conservation, which gives

cently been performed using efficient adaptive-grid phase- D

field techniques[9,12]. The 3D calculations require Vp=(A-Vgu)=——(A-VC)eus

substantial computer power, and have not been demonstrated Csolid

for low supersaturation levels or in the case of strongly an- L
isotropic surface kinetics. Fully mathematically consistent®! the crystal surface, whefeis the normal to the surface,

-

modeling of strongly faceted surfaces has been a particulariysurt iS the surface growth velocity vector, and the expression

challenging problem in crystal growfl24,25. on the right-hand side is evaluated just above tlhe crystal
Green's function techniques have been well developed igurface. Another expression for the growth velocity comes

two dimensions, both for surface-tension-limited growthfrom the Wilson-Frankel law,

[3,23] and for surface-kinetic-limited growtf4]. Here we

extend these treatments to the quasi-2D case of cylindrically v — K Zsuf Ceq

symmetric growth, which mainly involves the choice of a n Ceq

different Green’s function, along with some special treat-

ment near the axis of the cylindrical coordinates. The apwherecg,is the number density just above the surfacg,

proach described here is quite simple to implement, requirels the number density above an equilibrium surfater

little computer power, and can be adapted to a wide range ofthich v,,=0), and K is the usual kinetic coefficient. The

physical situations. Furthermore, it is a fairly good approxi-maximum value of the kinetic coefficient comes from the

mation to hexagonal prism growth, as long as there is not &ertz-Knudsen formula,

substantial hollowing of the growth of the prism faces. Thus

this approach applies fairly well to the case of ice crystal . _aPeViy
growth when the supersaturation is near or below the water K max= C“Kmax——l'(ZWm kT2

saturation value, or when the crystal size is not too large. Itis

also well suited to model the hollow column morphology wherea<1 is the sticking coefficien®, is the vapor pres-

[18], in which there is typically a substantial, nearly cylin- syre over an equilibrium surfac¥,, is the molecular vol-

drically symmetric, hollowing of the basal faces, but little ume, andm is the molecular mass.

hollowing of the prism faces. Since we are interested mainly in growth limited by dif-
We have used this technique here to model the growth of ,qjon and surface kinetics, we ignore surface tension for the

small ice crystallites grown in air, using data from Ya- : : :

mashita[18 ZyZ. We dergi]ve from these datg for a supersatu—present by takingeq—Csa, WhereCeys the saturation vapor

ration near the water saturation level, the kinetic growth coPressure above a ﬂ"?lt surfa@@,Z:{l. Then definingo=(c
Csad/Csarr the diffusion equation becomes

efficient as a function of temperature, which exhibits a great
deal of structure between 0 °C artB0 °C. We interpret the V25=0 1)
kinetic coefficient measurements in the context of growth

models in the presence of a disordered layer on the differen, " _
crystal facets of ice. Additional data of this kind, at different%th the boundary conditions (<) =o.
supersaturation levels and in different solvent gases, shou@
reveal much about the underlying physics governing the
growth of ice crystals, and may additionally contribute to our
understanding of the enigmatic surface structure of ice. Kosut=

and v,=Kogys.
ombining the two expressions far, yields the mixed
oundary condition

Csat .

D(A- Vo) gy 2

solid

Il. CYLINDRICALLY SYMMETRIC CRYSTAL GROWTH . ~
For the present case we consider tHat K(6,T,o4,9) can

depend on crystallographic orientatiérof the growing sur-

For concreteness we define our problem to be crystaace, temperatur&, and the supersaturation valdgy.
growth from a supersaturated vapor in a solvent gas, al- For the functional form of the kinetic coefficient, we take

A. The diffusion equation and boundary conditions



PRE 60 CYLINDRICALLY SYMMETRICAL GREEN’S FUNCTION . .. 1969

K = Ko tant] — | my tant] = ) = fﬁ A dA'—f AARLARYY
=Kmay tan PAKE an 7 —o(X)= A Um—lﬂm = "W‘%n' 1
Iy Csolid |, .~ ,
. L2
with J o lﬁDCSmK(G,U) adA;,

7= (tanb;+s;€)ls;, (3)  whereA; is the boundary at infinity and, is the boundary
at the crystal surface.

. _ To evaluate the integrals at infinity, we note the spheri-
where 6; is the angle of the surface normal relative to thecally symmetric solution for a crystal of radit,,

crystal axis, and the subscripts refers to eitherztkleasa) or
f (prism) axes. This form is similar to that used by AoR,
Yokoyama and Kurodf4], which derives from the advance- o(R)=0.— R
ment of admolecule terraces calculated by Burton, Cabrera,

and Frank[29]. For smalls; this form providesK~K .«
except neaw, =0, where there is a cusplike behavior. Here
we have softened the cusp by adding thefactor, which
givesK~ ;K ,ax ON a facet.

where hereR is the radius in spherical coordinates. Thus for
large R we haveo—o, and do/dn~R™2. Similarly,

~R ! anddy/dn=dy/dr~R~2. The area of the boundary
goes like A;~R?, so the second term in the first square
brackets above vanishes and the first term becomes

B. Green’s function formalism

17
The complexity of diffusion limited growth, even for the f g—w, dA]— — 0.
cylindrically symmetric case, is such that an analytic solution on
is nearly impossible for anything but the very simplest cases,
requiring the use of numerical simulation. We use a Green'@"d SO
function method here, which is an extension of that de- ”
scribed for the 2D casé3,4,23. With this technique we o _f oY Csolid , - ,
transform the bulk diffusion equation into an integro- o(X)=0= an’ chsatK(a’U) odA;
differential equation over the crystal interface. By solving » c
this interface equation numerically, the grid points move —g 42 f = h r'dr.. (5
with the interface, and the transformation reduces the dimen- TeTeT | on’ chsat (0.0) |0 2, (5

sionality of the problem, in our case from a 2D to a 1D
problem. where the latter integral is a line integral over the boundary
The Green’s function formalism for transforming the of the cylindrical crystal. The sign change in this term comes
Laplace equation is well known from electrostati2g], and  from an arbitrary convention as to the direction of the line
we apply it here to the cylindrically symmetric problem. integral overl’,. We note this form is somewhat different
From Green'’s theorem, using Jackson’s notation in 3D,  from that described in Ref4]. In the case of very fast ki-
v b netics, the boundary conditions change, giving

d
Pon Von

f (V24— V2 )dV= 3§ A, (@
\V S

Y do |
a7 7 Vgnr [Tl

0()?)=am+277J

where ¢ and ¢ are two scalar functions, and the volume and
area integrals are, respectively, over some volvhand the
surface of that volumé&. The derivatives are with respect to
the surface normal, i.e.g¢/on) = (ﬁ-§¢). Taking our lead
from electrostatics, we také= o, and let our volume be the
space between the crystal surface and the far-away boundary. Since there is no simple analytic expression for
The Green'’s function for the cylindrically symmetric case isq)ring(z,z’), we resort to numerical techniques to evaluate it
and its derivatives. For this we start with a ring of cha€ye
and radiug’'=r, located atz’ =0,

CDO(r12):q)ring((raz):(r0'0))a

where again we have thatlies just above the crystal sur-
face.

C. The Green'’s function

o €o S o
(X, X ):aq)ring(xlx ),

which we generate in table form using a commercial adap-

where Qring(i,i’) is the eIec_trostatic potential af.tarising tive grid electrostatics prografi2g] usingQ=10"° C and
from a ring of charg& at positionx’. Here our variables are ro=1m. Translation irz gives

X=(r,z) in cylindrical coordinates, and likewise fa".

Taking X to be just above the crystal surface, and usin Y — ,
V20=0 gV2¢= —51(2—2’) and our additional boundary T Pang(112.(10,2))= Prng((1,2-21).(100)
conditions, we obtain =®ing((r,]2—2'|),(r0,0)),
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where we have used the fact that the ring potential is sym- X;
metric in z about the ring plane. Similarly, scaling ir Xt X
yields

q)ring((raz)v(rruo)):(:_?)q)ring« r ::—(,),Z:—(,)) ,(ro,O))

so for an arbitrary ring with charg®, FIG. 1. A section of the polygonal crystal surface. The shaded
area denotes the integration region for poipt
r r r
Ding((r,2),(r",2"))= (r_(’)) q)ring( r r—?,|2—2’| r_(’)) ,(ro,O)) roughly a few parts in 10 We also verify that our Green’s
function satisfies the identity(X,X") = #(X’,X) to the same
ro o L To accuracy.
=7/ %o rr—,,|z—z |T To compute the gradient af(X,X'), we can use the fact

that V., (X,X") =V, (X' ,X) to write
and the Green’s function becomes

J _)_),_60 I’OZ ,ro ,I’O
o7 XX )_6<T) Vxlq)o(r ; |z—2'| r)’

whereV,,;®y(x4,X5) is the derivative ofb, with respect to
Near the ring itself the potential looks like that of a line its first argument. Similarly

€0

l//(f,i')za(

)
0

fo o
(I)O<rr_rr|z_z|r/)' (6)

charge, so
J YRR Eo(ro)zv q)( ,I’0| ,|r0>
_ R R — (X X)==|— Dol 1’2, |z2— 2|2
CDO—’—zQ |n(—y ~—(2.863 V)In| — 0z Qlr X r r
A1roeg |\ Ig 8ry
Xsgnz' —z).

using the above values f@ andr,. Here we have defined a
local Cartesian coordinate systenp,{)=(r—rq,z—2y), IIl. NUMERICAL SIMULATION
and define the length variabR= (p?+ %) Y2
Since the ring is curved, we can do a bit better at match- Given the above Green’s function formalism for solving
ing the numerical function by adding a linear ternrinthus  the cylindrically symmetric crystal growth problem, we now
we take write down a numerical algorithm. The basic steps are as
follows [3,23:
R i) Pick an initial crystal shape, with a discrete sethNof
Do(r 2) (Ao Aupin| . g ystal shap
(i) Calculate the various pieces of E®), and turn this
whereA; =1.0822,A,=2.863, angp is in meters. The value integral equation into a matrix equatiom = oo+ Hjjo;,
of A; was determined by a fit to the numerical data. Thewhere; is the vector of supersaturation values on the sur-
gradient of &, near the ring is then V&, face pointsx;.
=(0®ylor,0Pq/0z), with (i) Solve the matrix equation fos; and calculate the
crystal growth velocity vectoy; .

Py p R (iv) Evolve the crystal profile points by a distances;At
T - R Ap) gt A ln(s_ro) along the surface normal.
(v) Change the spacing and distribution xaf along the
and surface, if desired.
(vi) lterate.
oD, 4
7 —(Az=Asp) m2-

A. Defining the matrix equation

We use this form fob, whenR<0.06 m. We break up the integral equation abd¥s. (5)] into a
The asymptotic behavior of the ring potential at large dis-sum[3,23]:
tance can be gotten from a simple multipole expansion,

N
keeping only the monopole and quadrupolem()=(2,0) o(X)=0 +2 (Xj+Xj11)/2 %_ Csolid K(f9 )
terms. To this order VT = Jogexpelon’ T DCsa
Q 1r§ x 271’ odl',
(DO(I',Z)'vm 1_262(3 co§6—1)

where thex; in the integral limits are meant as the vector

and this form is used whenevél=(r2+z2)¥2>4m. We points shown in Fig. 1. This can then be written

have evaluated,, comparing the tabulated and asymptotic N
forms, and estimate tha_t with the above procedure we com- o=+ 2 Hijo,
pute the Green’s function everywhere to an accuracy of j=1
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where We evaluate the normal derivatives similarly, giving, for
example, to lowest order
(Xj+xj+1)/2 (9lﬂ ,
Hii= (X +%;_1)12 W(Xi’x) . €[ro\? ,To 4 To
b Aij”ﬂ'a T Via®o| 1 Ta|2i_2 |r (=Zj+1t7)
Cort ~ i i i
—lp(xi,x')%"dK(a,a) 27r'dl} " ‘)
sat +Vx2®o(r'r,|2i—2'|r)
= (A +A)—(B{j+Bij) XSQV(Z'—Zi)(I’jH_rJ‘)}V’,
and
where
X J
A{j=f ‘ Y (% X)2mr'dT =3y Iy
(xj+x;_1)/20N AR TR+ 1
Cooiid % R and for the end points,
Bi’j:DC J K(Gj,l,a'j)zﬁ(xi ,X,)Zﬂr’dré
sat] (Xj+x)-1)/2 €[ To 2 lo ro 2
( V2 9 i1*—(r> Vy2®o 0,|Zi_21|r>59r(21_2i)ﬂ(§> .
Xi+Xi 11 I 1
Agng o o7 (X X)2r ' dT'
X Finally, for the diagonal elements we use the sum 2@
(e 2 to write
Csoli XjTXj41 ~
B;':Dsg"dj PR, 0) g X2 AT
satJ Xj
: Ai=—2 Ay
with 7
Mis1—T; Implementation of the above into computer code was
0,—=arctar€ ﬁ) straightforward, but some care had to be taken to avoid in-
j+1 4

stabilities. The first of these is intrinsic to the problem, since

Fundamentally this is a nonlinear equation, owing to the deWe have ignored surface tension, which is known to be the
pendence oK on o. However, we assume thit depends dominant effect limiting the Mullens_-S_ekerkg_ instability in
only weakly ono, so we can use the previous valuecgfin ~ Many crystal growth problen{23]. This instability does not
computingK. h_ave_ a detn.m.ental effect in the case of a highly anisotropic
We evaluate these integrals using Gaussian quadraturddnetic coefficient, however since then the crystal growth is
using the usual form strongly faceted[4]. The num_e_rlcal proce(_jgre described
above does not introduce additional instabilities at the cor-
1 n ners of the facets.
f f(§)dé~ E Wi f(ém)- Another problem arises when tts are very small, and
-1 m=1 the kinetic coefficient is thus highly anisotropic. In this cir-
cumstance the growth of a polygonal line segment on the
%rystal surface can take it from< 0 to ;>0 (or vice versa
in a single time step, not stopping @t= 0, whereK assumes
11 its minimum value. Taking very small time steps solves this
(e —_K(fgj ,o'j)f J(xi X (Er' (&)de, problem, but at a price of greatly increased execution time
-1 for a given run. We eliminated this problem even for large
time steps by checking at each iteration if any line segment is
wheres; =[x, ,—x;| and going to advance and changes the sigm,dh the process. If
so, the growth of one of the vertex points is reduced to force
E)X_jL(E 0,—0 for that segment. This ensures that the surface does
4 |7 4 not pass through the “magic angles” which define the crys-
o tal facets without pausing & =0 for at least one time step.
and we obtain similar forms for the other terms. For evalu-  Finally, we find some indication of numerical instabilities
ating Bjj, which has a logarithmic divergence in the inte- when a large number of interface points is used, typically
grand, we use the logarithmic Gaussian quadrature formulgreater than a few hundred. We believe these problems arise
[3,23]. The end points also present some special cases singRcause of the large matrix inversion that res[8fs along
ri—0, and must be done separately. For example, we haveyith our imperfect computation of the ring charge Green's
5 function described above. With these caveats, we have found
B~ Csolid kKl Z & WX Xy) T M2 that the Green’s function method yields quite robust and re-
1 Degy 12771 AT 2 producible results for the growth of prismatic crystals.

For example, we can rewrite one of the terms above in th
form

x'(§)=

Xj+1
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FIG. 2. Ice crystal growth data, adapted from Yamashita Temperature (°C)

[18,22. This shows the ice prism diametdr,) and thicknessl(.)

. . . . FIG. 3. Kinetic coefficient measurements derived from the data
after growing 200 sec in ordinary air supersaturated at the water _. . . . L
saturation level. in Fig. 2, obtained by numerical modeling of cylindrically symmet-

ric growth, as described in the text. The line #6p,,, shows the
maximum kinetic coefficient allowed by the Hertz-Knudsen for-
IV. APPLICATION TO THE GROWTH MORPHOLOGY mula. The strong temperature dependendejnandK s, arises

OF ICE from the unusual surface properties of ice, which are ultimately

Diameter measurements of growing ice crystallites ardesponsible for the complex growth morphology of ice crystals.
shown in Fig. 2, which is adapted from the data of Ya-
mashita [18,22. These measurements were obtained bywere able to reproduce the observed crystal sizes everywhere
seeding ice crystals in a variable-temperature cloud chambexcept at—15 °C, where the calculated values lof after
operating with ordinary air, saturated with suspended wate200 sec were too small even Wiy, ism=Kmax. It is likely
droplets. The presence of water droplets, similar to those in that some dendritelike growtthollowing of the prism fac-
natural cloud, guaranteed that the water vapor pressure in the#s occurred at this temperature, thus producing experimen-
chamber was fixed very near the water saturation level. Aftetally measured crystal diameters in excess of what one would
nucleating a large collection of crystallites, the suspendegroduce using a cylindrically symmetric model. The ob-
crystallites were allowed to grow for 200 sec, at which pointserved growth may also have been affected by the ventilation
a sample of the crystal population was collected and the crysffect[30], since the crystallites were tumbling in the cloud
tal sizes measured. These data clearly show the well-knowehamber during the growth phase. ThusTet — 15 °C only
morphology transitions from platelike growth-2 °C) to co- ~ we took K yigm= Kmax @and Kpasa= L/ 707, in Fig. 3, where
lumnar growth(—5°C) to platelike growth(—15°C) and 7=200sec is the growth time. At all other temperatures
back to columnar growtli—30 °C). These data are particu- shown in Fig. 3, we could reproduce the obsertgdand
larly well suited for quantitative analysis, since the crystalsL ., and the fact thak was bounded b¥K . arose naturally
grew in the absence of perturbing boundary conditions, irout of the model.
contrast to crystal growth on substrates or other fixtures. These effects introduce some systematic uncertainty into

To model these data, we took;=s,=1/100, D=2 the inferred kinetic coefficients in Fig. 3, so the results here
X 10" °m?/sec’!, and set the saturation at infinity equal to must be taken as preliminary. Additional data are needed,
the water saturation level. Because the crystal growth waparticularly under very controlled conditions at different su-
typically strongly faceted, the precise valuesspfand s, persaturation levels, as might be obtained from observations
were not critical for determining the facet growth rate. Theof levitated growing crystalg31]. With such data one could
initial shape of the crystal was spherical with a radius of fiveobserve the crystal size continuously during growth, and
mm, which was also not critical. Theg, and e, in Eq. (3) compare the resultant crystal morphology with the model
were adjusted so that the crystal dimensions at the end of 2Ggalculations as a function of time.
sec of growth most closely matched the measured values, The results in Fig. 3 can be compared with the KL model
assuming that the kinetic coefficient was independent of predictions for growth in the presence of a disordered surface
for these calculations. From this analysis we derived valuetayer[19]. For example, one feature of the KL model is that
for the kinetic coefficient on the prism and basal faces as #or T<—15°C, the disordered layer is absent on both the
function of temperature, for supersaturation values of ordebasal and prism facets, and the growth kinetics is governed
the water saturation level, as shown in Fig. 3. By runningby the 2D nucleation rate. In particular, the onset of rapid 2D
models with different input parameters, we estimate the innucleation is thought to produce the sharp increas€in,
trinsic modeling uncertainties to be roughly 20% for most offor T<<—15°C, which rises t&,sa= Kmax @S the tempera-
the data. ture decreases. At these low temperatures the rate of 2D

The modeled crystal growth showed some hollowing ofnucleation is also expected to be rapid on the prism faces,
the basal faces, but mainly exhibited simple prismaticwhich should then also result iKism=Kmnax. With this,
growth; the crystal size was taken to equal the largest dimerkuroda and Lacmann argue on simple geometrical grounds
sion in all cases, i.el ,=2r . and L= (Znax—Zmin)- We  that diffusion effects are sufficient to produce the observed
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values ofL, /L. in this region. were obtained with no solvent gas present above the ice sur-
We see from Fig. 3, however, that the KL model is incor-face [33]. The transition from smalK to K~K,,, on the
rect at low temperatures, and that we must h#lgs, basal faces below~ —25°C then arises, according to the
<Kpasabelow T=—25°C in order to explain the observa- KL model, from the onset of rapid 2D nucleation at these
tions. Assuming that 2D nucleation on the prism faces is nolower temperatures.
a limiting factor in the growth at these temperatures, the A serious problem with the KL model is apparent when
most likely explanation for the observations is that the stick-considering the prism faces, however. In order to explain the
ing probability on the prism facets is considerably less thargrowth data, the KL model assumes that the disordering tran-
unity, approximatelya,,is,~0.05, while the sticking prob- sition on the prism faces occurs at a substantially lower tem-
ability to the basal faces is neaf,,~1. We cannot offer a perature than for the basal faces. This assumption is not
convincing physical argument for why we should haveborne out by the recent x-ray data, in which a disordering
Qprism< ApasaPlOWT = —25 °C, but one intriguing possibil- transition is found al ~ —12 °C for the prism face, i.e., at a
ity is the “poisoning” of the available lattice sites by the higher temperature than for the basal face. Although various
solvent gas molecules. Evidence for this possibility has beemeasurements of the disordered layer on ice have yielded
suggested previously by BeckmalB2]. conflicting resultg34], it seems unlikely from the sum of
As described by Kuroda and Lacmaji8,19 in the KL  these data that the disordering transition on the prism face
model, the onset of disordering brings with it a substantialoccurs belowT=—15°C. This issue remains largely unre-
change in the kinetic coefficient, from a large valuekgust  solved.
above the transition temperature to a much smaller value In summary, we have described above a relatively simple
below. This arises because the adhesive growth rate is higireen’s function approach for modeling cylindrically sym-
on the disordered surface, but can be very small in the abmetric crystal growth. This approach can adequately model
sence of the disordered layer. On the basal faces, the metire hexagonal prism growth of ice crystals, as long as there is
sured disordering transition dt~—15°C[21] is in fairly  not significant hollowing of the prism faces. We used this
good agreement with the KL model, which then explains theapproach to model existing ice crystal growth data, and pro-
transition to a very low basal kinetic coefficient as the tem-duced a measure of the surface kinetic coefficients of the
perature is lowered td~ — 15 °C. The slight discrepancy in basal and prism faces as a function of temperature, around a
the disordering temperature between the KL model and thseingle supersaturation level. Clearly, additional growth mea-
recent x-ray scattering daf@1] may possibly be reconciled surements at different supersaturations and using different
if the kinetic coefficient depends on solvent gas, since thesolvent gases would be very useful for unraveling the un-
growth measurements were done in air while the x-ray dataisual growth behavior and surface structure of ice.
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